skip to main content


Search for: All records

Creators/Authors contains: "Motabar, Dana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biofabrication utilizes biological materials and biological means, or mimics thereof, for assembly. When interfaced with microelectronics, electrobiofabricated assemblies enable exquisite sensing and reporting capabilities. We recently demonstrated that thiolated polyethylene glycol (PEG-SH) could be oxidatively assembled into a thin disulfide crosslinked hydrogel at an electrode surface; with sufficient oxidation, extra sulfenic acid groups are made available for covalent, disulfide coupling to sulfhydryl groups of proteins or peptides. We intentionally introduced a polycysteine tag (5xCys-tag) consisting of five consecutive cysteine residues at the C-terminus of a Streptococcal protein G to enable its covalent coupling to an electroassembled PEG-SH film. We found, however, that its expression and purification from E. coli was difficult, owing to the extra cysteine residues. We developed a redox-based autoinduction methodology that greatly enhanced the yield, especially in the soluble fraction of E. coli extracts. The redox component involved the deletion of oxyRS , a global regulator of the oxidative stress response and the autoinduction component integrated a quorum sensing (QS) switch that keys the secreted QS autoinducer-2 to induction. Interestingly, both methods helped when independently employed and further, when used in combination (i.e., autodinduced oxyRS mutant) the results were best—we found the highest total yield and highest yield in the soluble fraction. We hypothesize that the production host was less prone to severe metabolic perturbations that might reduce yield or drive sequestration of the -tagged protein into inclusion bodies. We expect this methodology will be useful for the expression of many such Cys-tagged proteins, ultimately enabling a diverse array of functionalized devices. 
    more » « less
  2. Abstract

    β‐galactosidase (β‐gal) is one of the most prevalent markers of gene expression. Its activity can be monitored via optical and fluorescence microscopy, electrochemistry, and many other ways after slight modification using protein engineering. Here, we have constructed a chimeric version that incorporates a streptococcal protein G domain at the N‐terminus of β‐gal that binds immunoglobins, namely IgG. This protein G: β‐galactosidase fusion enables β‐gal‐based spectrophotometric and electrochemical measurements of IgG. Moreover, our results show linearity over an industrially relevant range. We demonstrate applicability with rapid spectroelectrochemical detection of IgG in several formats including using an electrochemical sensing interface that is rapidly assembled directly onto electrodes for incorporation into biohybrid devices. The fusion protein enables sensitive, linear, and rapid responses, and in our case, makes IgG measurements quite robust and simple, expanding the molecular diagnostics toolkit for biological measurement.

     
    more » « less
  3. Abstract

    Process conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real‐time assessment of antibody titer and N‐linked galactosylation. We make use of a spatially resolved electroassembled thiolated polyethylene glycol hydrogel that enables electroactivated disulfide linkages. For titer assessment, we constructed a cysteinylated protein G that can be linked to the thiolated hydrogel allowing for robust capture and assessment of antibody concentration. For detecting galactosylation, the hydrogel is linked with thiolated sugars and their corresponding lectins, which enables antibody capture based on glycan pattern. Importantly, we demonstrate linear assessment of total antibody concentration over an industrially relevant range and the selective capture and quantification of antibodies with terminal β‐galactose glycans. We also show that the interfaces can be reused after surface regeneration using a low pH buffer. Our functionalized interfaces offer advantages in their simplicity, rapid assembly, connectivity to electronics, and reusability. As they assemble directly onto electrodes that also serve as I/O registers, we envision incorporation into diagnostic platforms including those in manufacturing settings.

     
    more » « less